Chapter 5 Including clinical variables

5.1 Preparation of data

One of the important reasons of the Bayesian network analysis is assessing the relationship between gene expressions and clinical variables. cpbnplot offers incorporating metadata into inference. As a demonstrative purpose, the enrichment analysis results from GSE133624 is applied on data from The Cancer Genome Atlas Program (TCGA) (Cancer Genome Atlas Research Network et al. 2013). Specifically, TCGA-BLCA data is downloaded by the useful library TCGAbiolinks (Colaprico et al. 2016).

library(TCGAbiolinks)
## Not run
# query <- GDCquery(project = "TCGA-BLCA",
#                   data.category = "Transcriptome Profiling",
#                   data.type = "Gene Expression Quantification",
#                   workflow.type = "HTSeq - Counts")
# download <- GDCdownload(query)
# tcgaData <- GDCprepare(query)
# save(file="tcgaData.rda", tcgaData)

## Load dataset
load(file="tcgaData.rda")

We again applied VST on the data, and filtered the metadata based on the variables to be included in the inference. In this analysis, age_at_diagnosis and paper_Combined T and LN category, which is a sum of Tumor category 1/2 (0) vs. 3/4 (1) and LN negative (0) vs positive (1), are included.

library(DESeq2)
library(dplyr)
dataAssay <- assays(tcgaData)
tcgaCount <- dataAssay@listData$`HTSeq - Counts`

## Make DESeq2 object
ddsTCGA <- DESeqDataSetFromMatrix(countData = tcgaCount,
                              colData = tcgaData@colData,
                              design= ~ 1)

vstedTCGA <- assay(vst(ddsTCGA))

## Variable selection phase
metadata <- data.frame(tcgaData@colData) %>%
    select(age_at_diagnosis, paper_Combined.T.and.LN.category) %>%
    na.omit() %>%
    filter(paper_Combined.T.and.LN.category!="ND")

## Scale and factorize
metadata$age_at_diagnosis <- as.numeric(scale(metadata$age_at_diagnosis))
metadata$paper_Combined.T.and.LN.category <- as.factor(metadata$paper_Combined.T.and.LN.category)

5.2 Inference of pathway relationship including clinical variables

We assess the relationship between the curated biological pathway information and clinical variables mentioned above. Variables other than expression data can be specified with otherVar, as well as otherVarName for their name. The order of otherVar must be same as column order of expression data. We use all the significant pathways of corrected p-values below 0.05.

bnCov <- bnpathplot(pway,
                    vstedTCGA,
                    nCategory = 1000,
                    adjpCutOff = 0.05,
                    expSample=rownames(metadata),
                    algo="hc", strType="normal",
                    otherVar=metadata,
                    otherVarName=c("Age", "Category"),
                    R=50, cl=parallel::makeCluster(10),
                    returnNet=T)
## Check DAG
igraph::is.dag(as.igraph(bnCov$av))
FALSE [1] TRUE
## Fit the parameter to network based on the data
bnFit <- bn.fit(bnCov$av, bnCov$df)

Plot the resulting network.

bnCov$plot

5.3 Conditional probability query

Next we perform conditional probability queries by the bnlearn function cpdist to elucidate how the clinical variables affect pathway regulation. First we fit the inferred network to the original data. These are stored in the named list. Logic sampling is performed unless otherwise stated.

Perform cpdist, and visualize the distribution of “Molecules associated with elastic fibres” conditional on the tumor category using ggdist.

library(bnlearn)
library(ggdist)
library(ggplot2)

candPath <- "Molecules associated with elastic fibres"

efz <- cpdist(bnFit, nodes=c(candPath), evidence=(Category==0))
efo <- cpdist(bnFit, nodes=c(candPath), evidence=(Category==1))
eft <- cpdist(bnFit, nodes=c(candPath), evidence=(Category==2))

effect = data.frame(
  val = c(efz[,1], efo[,1], eft[,1]),
  stage = c(rep("0",nrow(efz)), rep("1", nrow(efo)), rep("2", nrow(eft)))
)

disMean <- effect %>% group_by(stage) %>% summarise(mean=mean(val))
stageWMean <- paste0(disMean$stage, " (mean=", round(disMean$mean,3), ")")
effect$stageLabel <- c(rep(stageWMean[1],nrow(efz)), rep(stageWMean[2], nrow(efo)), rep(stageWMean[3], nrow(eft)))

ggplot(effect, aes(x=val, y=stage, color=stageLabel, fill=stageLabel)) +
    scale_color_manual(values=c("steelblue","gold","tomato")) +
    scale_fill_manual(values=c("steelblue","gold","tomato")) +
    stat_dotsinterval() + theme_bw() + ggtitle(candPath)

How the down-regulation in “Cell Cycle Checkpoints” affects the other pathways? This time using the importance sampling method, likelihood weighting.

predNodes <- names(bnFit)
predNodes <- predNodes[predNodes != "Cell Cycle Checkpoints"]
maxVal <- max(bnCov$df[candPath])
minVal <- min(bnCov$df[candPath])

lowCCC <- cpdist(bnFit, nodes=predNodes, evidence=list("Cell Cycle Checkpoints"=minVal), method="lw")
lowW <- attributes(lowCCC)$weights
highCCC <- cpdist(bnFit, nodes=predNodes, evidence=list("Cell Cycle Checkpoints"=maxVal), method="lw")
highW <- attributes(highCCC)$weights

## Remove the factor
highCCC$Category <- NULL
lowCCC$Category <- NULL

difMeanCCC <- apply(highCCC, 2, function(x) weighted.mean(x, highW)) - apply(lowCCC, 2, function(x) weighted.mean(x, lowW))

## Top absolute value
kable(head(difMeanCCC[order(abs(difMeanCCC), decreasing=TRUE)]), col.names=c("difference"))
difference
M Phase 23.43499
Mitotic Prometaphase 21.20258
Mitotic Metaphase and Anaphase 20.87912
Mitotic Anaphase 20.73596
Separation of Sister Chromatids 19.51641
Resolution of Sister Chromatid Cohesion 19.35302
## Reflect the difference in the plot modifying ggplot2 object
changeCol <- bnCov$plot$data
difMeanCCC <- difMeanCCC[changeCol$name]
names(difMeanCCC) <- changeCol$name
changeCol$color <- difMeanCCC

## Replace the color, change the legend
bnCov$plot$data <- changeCol
bnCov$plot + scale_color_continuous(low="blue",high="red",name="difference")

5.4 Gene relationship with variables

For the genes in interesting pathway, clinical variables can be incorporated too. We investigated the genes involved in the reactome “Molecules associated with elastic fibres.”

bnGeneCov <- bngeneplot(pway,
                vstedTCGA, pathNum=43,
                expSample=rownames(metadata),
                otherVar=metadata,
                hub=5, R=100,
                otherVarName=c("Age","Category"),
                cl=parallel::makeCluster(10),
                returnNet=T)

Plot the resulting network of genes.

## Plot
bnGeneCov$plot

## Check DAG
igraph::is.dag(as.igraph(bnGeneCov$av))
FALSE [1] TRUE
## Fit the parameter to network based on the data
bnFitGene <- bn.fit(bnGeneCov$av, bnGeneCov$df)

Perform cpdist, and examine the mean and distribution using ggdist. We can see that the expression of the gene EFEMP1, which is reported to be a candidate for a biomarker of aggressive bladder cancer or therapeutic targets (Han et al. 2017), is going up with each stage.

candGene <- "EFEMP1"
efz <- cpdist(bnFitGene, nodes=c(candGene), evidence=(Category==0))
efo <- cpdist(bnFitGene, nodes=c(candGene), evidence=(Category==1))
eft <- cpdist(bnFitGene, nodes=c(candGene), evidence=(Category==2))

effect = data.frame(
  val = c(efz[,1], efo[,1], eft[,1]),
  stage = c(rep("0",nrow(efz)), rep("1", nrow(efo)), rep("2", nrow(eft)))
)

disMean <- effect %>% group_by(stage) %>% summarise(mean=mean(val))
stageWMean <- paste0(disMean$stage, " (mean=", round(disMean$mean,3), ")")
effect$stageLabel <- c(rep(stageWMean[1],nrow(efz)), rep(stageWMean[2], nrow(efo)), rep(stageWMean[3], nrow(eft)))

ggplot(effect, aes(x=val, y=stage, color=stageLabel, fill=stageLabel)) +
    scale_color_manual(values=c("steelblue","gold","tomato")) +
    scale_fill_manual(values=c("steelblue","gold","tomato")) +
    stat_dotsinterval() + theme_bw() + ggtitle(candGene)

5.5 Confirming the existing knowledge

To confirm the validity of the inferred Bayesian network, we can focus on some genes that is already validated to be related to clinical information or is incorporated into the daily clinical practice. To obtain the pathways that include the specific gene, one can use obtainPath function. This time we focus on the gene MMP2, as the gene has been reported to be related to clinical variables in bladder cancer (Vasala, Pääkkö, and Turpeenniemi-Hujanen 2003; Fouad et al. 2019; Winerdal et al. 2018).

pathSub <- obtainPath(pway, "MMP2")

Using the top pathway involving MMP2, construct the network and plot.

bnGeneCov2 <- bngeneplot(pathSub,
                vstedTCGA, pathNum=1,
                expSample=rownames(metadata),
                otherVar=metadata,
                hub=5, R=50, algo="hc",
                otherVarName=c("Age","Category"),
                cl=parallel::makeCluster(10),
                returnNet=T)

bnGeneCov2$plot

bnGeneCov2$av <- cpbnplot:::chooseEdgeDir(bnGeneCov2$av, bnGeneCov2$df, scoreType="mi-cg", debug=FALSE)
bnGeneCov2Fit <- bn.fit(bnGeneCov2$av, bnGeneCov2$df)

Predict the distribution.

candGene <- "MMP2"

mz <- cpdist(bnGeneCov2Fit, nodes=c(candGene), evidence=(Category==0), method="ls")
mo <- cpdist(bnGeneCov2Fit, nodes=c(candGene), evidence=(Category==1), method="ls")
mt <- cpdist(bnGeneCov2Fit, nodes=c(candGene), evidence=(Category==2), method="ls")

effect = data.frame(
  val = c(mz[,1], mo[,1], mt[,1]),
  stage = c(rep("0",nrow(mz)), rep("1", nrow(mo)), rep("2", nrow(mt)))
)

disMean <- effect %>% group_by(stage) %>% summarise(mean=mean(val))
stageWMean <- paste0(disMean$stage, " (mean=", round(disMean$mean,3), ")")
effect$stageLabel <- c(rep(stageWMean[1],nrow(mz)), rep(stageWMean[2], nrow(mo)), rep(stageWMean[3], nrow(mt)))

ggplot(effect, aes(x=val, y=stage, color=stageLabel, fill=stageLabel)) +
    scale_color_manual(values=c("steelblue","gold","tomato")) +
    scale_fill_manual(values=c("steelblue","gold","tomato")) +
    stat_dotsinterval() + theme_bw() + ggtitle(candGene)

It is interesting to investigate whether the result is similar in the other database, like Gene Ontology doing the same analysis.

## Perform the same analysis on GO enrichment result
pathSubGO <- obtainPath(pwayGO, "MMP2")
bnCovGO <- bngeneplot(pathSubGO,
                vstedTCGA,
                pathNum=1,
                expSample=rownames(metadata),
                otherVar=metadata,
                R=50, layout="sugiyama",
                otherVarName=c("Age","Category"),
                cl=parallel::makeCluster(10),
                returnNet=T)
bnCovGO$av <- cpbnplot:::chooseEdgeDir(bnCovGO$av, bnCovGO$df, scoreType="mi-cg", debug=FALSE)
bnGeneCovGOFit <- bn.fit(bnCovGO$av, bnCovGO$df)

mz <- cpdist(bnGeneCovGOFit, nodes=c(candGene), evidence=(Category==0), method="ls")
mo <- cpdist(bnGeneCovGOFit, nodes=c(candGene), evidence=(Category==1), method="ls")
mt <- cpdist(bnGeneCovGOFit, nodes=c(candGene), evidence=(Category==2), method="ls")

effect = data.frame(
  val = c(mz[,1], mo[,1], mt[,1]),
  stage = c(rep("0",nrow(mz)), rep("1", nrow(mo)), rep("2", nrow(mt)))
)

disMean <- effect %>% group_by(stage) %>% summarise(mean=mean(val))
stageWMean <- paste0(disMean$stage, " (mean=", round(disMean$mean,3), ")")
effect$stageLabel <- c(rep(stageWMean[1],nrow(mz)), rep(stageWMean[2], nrow(mo)), rep(stageWMean[3], nrow(mt)))

ggplot(effect, aes(x=val, y=stage, color=stageLabel, fill=stageLabel)) +
    scale_color_manual(values=c("steelblue","gold","tomato")) +
    scale_fill_manual(values=c("steelblue","gold","tomato")) +
    stat_dotsinterval() + theme_bw() + ggtitle(candGene) + labs(caption=pathSubGO@result$Description[1])

5.6 Investigating the network based on the clinical question

After confirming the knowledge, it is interesting to test how difference in clinical variables affect gene expression. bnlearn can naturally handle this again using cpdist. We now include two more variables, age_at_diagnosis, gender, paper_Noninvasive.bladder.cancer.therapy, paper_Combined.T.and.LN.category. Inference based on these information, we can ask:

Which genes have the biggest expression differences between those treated with BCG and with none, considering the networks of genes and clinical variables of age, gender, tumor category in TCGA-BLCA dataset using genes significantly differed in GSE133624 and involved in curated biological pathways related to MMP2?

## Metadata filtering
metadata <- data.frame(tcgaData@colData) %>%
    select(age_at_diagnosis, gender,
           paper_Noninvasive.bladder.cancer.therapy,
           paper_Combined.T.and.LN.category) %>%
    na.omit() %>%
    filter(paper_Combined.T.and.LN.category!="ND") %>%
    filter(paper_Noninvasive.bladder.cancer.therapy!="ND")

metadata$age_at_diagnosis <- as.numeric(scale(metadata$age_at_diagnosis))
metadata$gender <- as.factor(metadata$gender)
metadata$paper_Combined.T.and.LN.category <- as.factor(metadata$paper_Combined.T.and.LN.category) 
metadata$paper_Noninvasive.bladder.cancer.therapy <- as.factor(metadata$paper_Noninvasive.bladder.cancer.therapy)

## Subset to significant pathways, and those related to MMP2
pway@result <- subset(pway@result, p.adjust<0.05)
pathSub <- obtainPath(pway, "MMP2")

bnCovGene3 <- bngeneplot(pathSub,
                vstedTCGA,
                pathNum = seq_len(nrow(pathSub)),
                expSample=rownames(metadata),
                otherVar=metadata,
                hub=5, R=50,
                otherVarName=c("Age","Gender","Therapy","Category"),
                cl=parallel::makeCluster(10),
                returnNet=T)
bnCovGene3$av <- chooseEdgeDir(bnCovGene3$av, bnCovGene3$df, scoreType="mi-cg", debug=FALSE)
bnCovGene3Fit <- bn.fit(bnCovGene3$av, bnCovGene3$df)

allGenes <- names(bnCovGene3$av$nodes)
allGenes <- allGenes[!allGenes %in% c("Age","Gender","Therapy","Category")]
no <- cpdist(bnCovGene3Fit, nodes=allGenes, evidence=(Therapy=="none"), method="ls")
bcg <- cpdist(bnCovGene3Fit, nodes=allGenes, evidence=(Therapy=="Bacillus Calmette.Guerin (BCG)"), method="ls")

difMean <- data.frame(apply(bcg, 2, mean)-apply(no, 2, mean))
difMean$name <- rownames(difMean)
colnames(difMean) <- c("difference","name")
difMean <- difMean[order(abs(difMean$difference), decreasing=T),]
kable(head(difMean, n=5))
difference name
PCOLCE 0.3511844 PCOLCE
ADAMTS8 -0.1952817 ADAMTS8
COL11A1 0.1914131 COL11A1
COL25A1 0.1877005 COL25A1
ELN -0.1367145 ELN

We can reflect the difference to the plot. In the previous EFEMP1 plot:

candGene <- names(bnFitGene)
candGene <- candGene[candGene != "Category"]
efz2 <- cpdist(bnFitGene, nodes=candGene, evidence=(Category==0))
eft2 <- cpdist(bnFitGene, nodes=candGene, evidence=(Category==2))

difMean <- apply(eft2, 2, mean) - apply(efz2, 2, mean)

changeCol <- bnGeneCov$plot$data
difMean <- difMean[changeCol$name]
names(difMean) <- changeCol$name
changeCol$color <- difMean

## Replace shape and color
changeCol$shape <- rep(19, dim(bnGeneCov$plot$data)[1])
bnGeneCov$plot$data <- changeCol
bnGeneCov$plot + scale_color_continuous(low="blue",high="red",name="difference")

5.7 Classification using BN

Inferred BN can be used as a classifier of conditions. In this analysis, we perform the classification of whether the cancer samples are harboring TP53 mutation or not (column paper_mutation in TP53). First, we make a metadata table as same as the above examples.

metadata <- data.frame(tcgaData@colData) %>%
  dplyr::select(age_at_diagnosis, gender, paper_mutation.in.TP53, paper_Combined.T.and.LN.category) %>% na.omit() %>%
  filter(paper_mutation.in.TP53!="ND") %>%
  filter(paper_Combined.T.and.LN.category!="ND")
table(metadata$paper_mutation.in.TP53)
FALSE 
FALSE  no yes 
FALSE 184 163
## Set TP53 status to numeric of 0/1.
metadata$paper_mutation.in.TP53 <- as.numeric(as.factor(metadata$paper_mutation.in.TP53))-1
metadata$age_at_diagnosis <- as.numeric(scale(metadata$age_at_diagnosis))
metadata$paper_Combined.T.and.LN.category <- as.factor(metadata$paper_Combined.T.and.LN.category)
metadata$gender <- as.factor(metadata$gender)

Split the data to train/test according to TP53 mutation status using caret (Kuhn 2008). In this analysis, the five-fold cross validation is performed. Fit the model using the expression of genes in the pathway. This time the classification performance of significant pathways (corrected p < 1e-7) are to be compared. onlyDf option can be enabled to return only the data.frame containing data for prediction, useful for testing purpose.

set.seed(53) # Seed for split
trainIndex <- caret::createFolds(factor(metadata$paper_mutation.in.TP53), k = 5, list = TRUE, returnTrain=TRUE)
allnets <- list() ## Store network in the list
allClassRes <- list() ## Store prediction in the list

for (f in seq_len(5)) {
  nets <- list()
  classRes <- list()
  foldTrainIndex <- trainIndex[[f]]
  ## Recursively fit and test for significant pathways
  for (pnum in seq(1, dim(subset(pway@result, p.adjust<1e-5))[1], 1)) {
      cl <- parallel::makeCluster(12)
      bnCovTrain <- bngeneplot(pway, vstedTCGA[,rownames(metadata)][, foldTrainIndex], pathNum=pnum, layout="sugiyama",
                               expSample=rownames(metadata[foldTrainIndex,]), algo="hc", strType="normal",
                               otherVar=metadata[foldTrainIndex,], otherVarName=c("Age","Gender","TP53","Category"),
                               R=50, cl=cl, returnNet=T)
      ## Return only DF for testing
      bnCovTest <- bngeneplot(pway, vstedTCGA[,rownames(metadata)][, -foldTrainIndex], pathNum=pnum,
                               expSample=rownames(metadata[-foldTrainIndex,]),
                               otherVar=metadata[-foldTrainIndex,],  otherVarName=c("Age","Gender","TP53","Category"),
                               onlyDf=T)
      bnCovTrain$av <- cpbnplot:::chooseEdgeDir(bnCovTrain$av, bnCovTrain$df, scoreType="mi-cg", debug=FALSE)
      
      ## If DAG and TP53 have parents
      if ( igraph::is.dag(bnlearn::as.igraph(bnCovTrain$av)) && length(bnCovTrain$av$nodes$TP53$parents) >= 1 ){
        bnCovLargeFit <- bnlearn::bn.fit(bnCovTrain$av, bnCovTrain$df)
        pred <- sigmoid::sigmoid(predict(bnCovLargeFit, node="TP53", data=bnCovTest, method = "bayes-lw")) # Use sigmoid function
        classRes[[pway@result$Description[pnum]]] <- pred
        nets[[pway@result$Description[pnum]]] <- bnCovTrain
      } else {
        message(paste0("Among pathway ", pway@result$Description[pnum], ", no parent node of TP53 is found, or inferred network is not dag."))
      }
      parallel::stopCluster(cl)    
  }
  allnets[[f]] <- nets
  allClassRes[[f]] <- classRes
}

Using the library pROC, calculate the area under ROC (auROC) (Robin et al. 2011).

library(pROC)
library(ggplotify)

rocDf <- c()
allRocList <- list()
for (f in seq_len(5)) {
  correct <- metadata[-trainIndex[[f]],]$paper_mutation.in.TP53
  predDf <- data.frame(allClassRes[[f]])
  predDf$label <- correct
  
  rocList <- list()
  for (i in seq_len(dim(predDf)[2]-1)){
    rocList[[names(predDf)[i]]] <- roc(predDf$label, predDf[,i], ci=TRUE)
  }
  tmpRocDf <- data.frame(t(data.frame(purrr::map(rocList, function(x) as.numeric(x$auc)))))
  colnames(tmpRocDf) <- c(paste0("auc",f))
  tmpRocDf$name <- rownames(tmpRocDf)
  allRocList[[f]] <- tmpRocDf
}

allRocListDf <- allRocList %>%
  purrr::reduce(left_join, by = "name")

rocMean <- allRocListDf %>%
  rowwise() %>%
  mutate(Min = min(c_across(starts_with("auc")), na.rm=T),
         Max = max(c_across(starts_with("auc")), na.rm=T),
         Mean = mean(c_across(starts_with("auc")), na.rm=T),
         Sd = sd(c_across(starts_with("auc")), na.rm=T)) %>%
  select(name ,Mean, Sd) %>%
  arrange(desc(Mean))

kable(rocMean, row.names=FALSE, booktab=TRUE) %>%
  kable_styling(font_size = 10)
name Mean Sd
Synthesis.of.DNA 0.7702640 0.0483161
S.Phase 0.7564041 0.0606541
DNA.strand.elongation 0.7558024 0.0515143
DNA.Replication 0.7418214 0.0724349
Mitotic.Spindle.Checkpoint 0.7385408 0.0384938
Mitotic.Anaphase 0.7359661 0.0436257
Resolution.of.Sister.Chromatid.Cohesion 0.7338589 0.0296269
Mitotic.Metaphase.and.Anaphase 0.7305106 0.0879798
Homologous.DNA.Pairing.and.Strand.Exchange 0.7290159 0.0428621
Activation.of.ATR.in.response.to.replication.stress 0.7269121 0.0367326
Amplification.of.signal.from.the.kinetochores 0.7195224 0.0399094
HDR.through.Homologous.Recombination..HRR. 0.7185543 0.0289043
RHO.GTPases.Activate.Formins 0.7082054 0.0360879
Cell.Cycle.Checkpoints 0.7065901 0.0451219
Mitotic.Prometaphase 0.7053514 0.0573109
Amplification..of.signal.from.unattached..kinetochores.via.a.MAD2..inhibitory.signal 0.6991004 0.0965263
Separation.of.Sister.Chromatids 0.6986134 0.0845527
EML4.and.NUDC.in.mitotic.spindle.formation 0.6749238 0.0708973

Show the resulting network with the top auROC, and the ROC plot using pROC (Robin et al. 2011).

topPath <- rocMean[1,"name"]
candFold <- as.numeric(allRocListDf %>% filter(name == as.character(topPath)) %>% summarize(which.max(c_across(starts_with("auc")))))


## With the CI
candRoc <- data.frame(metadata[-trainIndex[[candFold]],]$paper_mutation.in.TP53)
colnames(candRoc) <- c("label")
candRoc$pred <- as.numeric(unlist(allClassRes[[candFold]][gsub("[.]", " ", as.character(topPath))]))


rocplot <- as.ggplot(function(){
  rocobj1 <- plot.roc(candRoc$label, candRoc$pred, print.auc = TRUE, ci=TRUE, col="black",
                      main = "Mutation in TP53", percent=TRUE)
  ciobj <- ci.se(rocobj1, specificities = seq(0, 100, 5)) 
  plot(ciobj, type = "shape", col = "steelblue")
})

## Along with the network
topNet <- allnets[[candFold]][[gsub("[.]", " ", topPath)]]
topNet$plot + rocplot

Using bnlearn::cpdist, check the difference in the distribution mean when the value of the node TP53 is above and below 0.5.

topFit <- bnlearn::bn.fit(topNet$av, topNet$df)

candNodes <- names(topNet$av$nodes)
candNodes <- candNodes[!candNodes %in% c("TP53","Category","Gender")]

tp53low <- cpdist(topFit, nodes=candNodes, evidence=(TP53 < 0.5))
dim(tp53low)
FALSE [1] 5207   43
tp53high <- cpdist(topFit, nodes=candNodes, evidence=(TP53 > 0.5))
dim(tp53high)
FALSE [1] 4753   43
difMeanTp53 <- apply(tp53high, 2, mean) - apply(tp53low, 2, mean)
kable(head(difMeanTp53[order(abs(difMeanTp53), decreasing=T)]), col.names=c("difference"))
difference
MCM2 0.4732629
RFC4 0.4666554
ORC1 0.4331116
MCM8 0.4323734
GINS1 0.4120761
CCNE2 0.3795090
changeCol <- topNet$plot$data
difMeanTp53 <- difMeanTp53[changeCol$name]
names(difMeanTp53) <- changeCol$name
changeCol$color <- difMeanTp53

## Replace shape and color
topNet$plot$data <- changeCol
topNet$plot + scale_color_continuous(low="blue",high="red",name="difference")

When the TP53 takes the extreme values on logic sampling.

topFit <- bnlearn::bn.fit(topNet$av, topNet$df)

candNodes <- names(topNet$av$nodes)
candNodes <- candNodes[!candNodes %in% c("TP53","Category","Gender")]

tp53low <- cpdist(topFit, nodes=candNodes, evidence=(TP53 < 0.01))
dim(tp53low)
FALSE [1] 1814   43
tp53high <- cpdist(topFit, nodes=candNodes, evidence=(TP53 > 0.99))
dim(tp53high)
FALSE [1] 1448   43
difMeanTp53 <- apply(tp53high, 2, mean) - apply(tp53low, 2, mean)
kable(head(difMeanTp53[order(abs(difMeanTp53), decreasing=T)]), col.names=c("difference"))
difference
MCM2 0.9259180
RFC4 0.8718847
ORC1 0.8373246
GINS1 0.8137102
MCM8 0.8044904
PRIM1 0.7336477
changeCol <- topNet$plot$data
difMeanTp53 <- difMeanTp53[changeCol$name]
names(difMeanTp53) <- changeCol$name
changeCol$color <- difMeanTp53

## Replace shape and color
topNet$plot$data <- changeCol
topNet$plot + scale_color_continuous(low="blue",high="red",name="difference")

Perform likelihood weighting.

tp53low <- cpdist(topFit, nodes=candNodes, evidence=list(TP53 = 0), method="lw")
tp53high <- cpdist(topFit, nodes=candNodes, evidence=list(TP53 = 1), method="lw")

difMeanTp53 <- apply(tp53high, 2, function(x) weighted.mean(x, attributes(tp53high)$weights)) - apply(tp53low, 2, function(x) weighted.mean(x, attributes(tp53low)$weights))

changeCol <- topNet$plot$data
difMeanTp53 <- difMeanTp53[changeCol$name]

kable(head(difMeanTp53[order(abs(difMeanTp53), decreasing=T)]), col.names=c("difference"))
difference
MCM2 0.5981190
RFC4 0.5856990
ORC1 0.5484684
GINS1 0.5112619
MCM8 0.5072800
CCNA2 0.4784021
names(difMeanTp53) <- changeCol$name
changeCol$color <- difMeanTp53

## Replace shape and color
topNet$plot$data <- changeCol
topNet$plot + scale_color_continuous(low="blue",high="red",name="difference")

queryCpDistLw function performs sampling by likelihood weighting using cpdist, and returns the data.frame with weights. It just performs cpdist on the queried level and produce a plot. queryCpDistLs performs logic sampling.

## Only likelihood weighting is supported in queryCpDist.
q1 <- queryCpDistLw(topFit, names(difMeanTp53)[1], evidence="TP53", level=c(0,0.5,1))
kable(head(q1$df[,c(names(difMeanTp53)[1],"weights")]))
RFC2 weights
10.99188 0.8078536
10.16224 0.9962997
11.63254 0.1592045
10.83047 0.9999093
11.16883 0.9024512
10.14470 0.7950615

References

Cancer Genome Atlas Research Network, John N Weinstein, Eric A Collisson, Gordon B Mills, Kenna R Mills Shaw, Brad A Ozenberger, Kyle Ellrott, Ilya Shmulevich, Chris Sander, and Joshua M Stuart. 2013. “The Cancer Genome Atlas Pan-Cancer Analysis Project.” Nat. Genet. 45 (10): 1113–20.
Colaprico, Antonio, Tiago C Silva, Catharina Olsen, Luciano Garofano, Claudia Cava, Davide Garolini, Thais S Sabedot, et al. 2016. TCGAbiolinks: An R/Bioconductor Package for Integrative Analysis of TCGA Data.” Nucleic Acids Res. 44 (8): e71.
Fouad, Hanan, Hosni Salem, Doha El-Sayed Ellakwa, and Manal Abdel-Hamid. 2019. MMP-2 and MMP-9 as Prognostic Markers for the Early Detection of Urinary Bladder Cancer.” J. Biochem. Mol. Toxicol. 33 (4): e22275.
Han, A L, B A Veeneman, L El-Sawy, K C Day, M L Day, S A Tomlins, and E T Keller. 2017. “Fibulin-3 Promotes Muscle-Invasive Bladder Cancer.” Oncogene 36 (37): 5243–51.
Kuhn, Max. 2008. “Building Predictive Models in R Using the Caret Package.” Journal of Statistical Software, Articles 28 (5): 1–26.
Robin, Xavier, Natacha Turck, Alexandre Hainard, Natalia Tiberti, Frédérique Lisacek, Jean-Charles Sanchez, and Markus Müller. 2011. pROC: An Open-Source Package for R and s+ to Analyze and Compare ROC Curves.” BMC Bioinformatics 12 (March): 77.
Vasala, Kaija, Paavo Pääkkö, and Taina Turpeenniemi-Hujanen. 2003. “Matrix Metalloproteinase-2 Immunoreactive Protein as a Prognostic Marker in Bladder Cancer.” Urology 62 (5): 952–57.
Winerdal, Malin E, David Krantz, Ciputra A Hartana, Ali A Zirakzadeh, Ludvig Linton, Emma A Bergman, Robert Rosenblatt, et al. 2018. “Urinary Bladder Cancer Tregs Suppress Mmp2 and Potentially Regulate Invasiveness.” Cancer Immunol Res 6 (5): 528–38.